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Abstract-By extending the Cleary theory. a thermoelastic theory of fluid-filled porous materials
is established. which incorporates the heat transportation by fluid flow through pores in addition
to the difference between the thermal expansibility of the pore fluid and that of the solid skeleton.
It can be seen that the displacement field is completely coupled with the pore pressure and tem­
perature fields in general; however, for an irrotational displacement. the first field is decoupled from
the last two, which are still coupled with each other. Furthermore. after being simplified on the
basis of the data on material properties for various types of rock. the field equations are applied to
a thermoelastic model problem of hot (or cold) water injection from a spherical cavity into an
infinite porous body. The analysis of that problem shows that the effect of the heat transportation
by fluid flow on the temperature distribution and the thermal stresses varies greatly according to
the kind of rock.

I. INTRODUCTION

Governing equations for a fluid-saturated poroelastic solid in an isothermal quasi-static
state have been developed and improved by siot (1941. 1955. 1956) and siot and Willis
(1957). Jnspite of a considerable idealization of the behavior of soils and rocks. this theory
has turned out to be rich enough to afford excellent insight into the wide variety of
mechanical phenomena. Rice and Cleary (1976) have given a rational reformulation of the
siot theory. and their ratiomllized version has proved more convenient in solving relevant
problems and to interpret the solutions obtained. see Cleary (1976. 1977. 1978) and Rudnicki
(1987) for example.

On the other hand. many more elaborate theories have been developed by using the
modern theory of mixtures. taking into account finite deformations and thermal effects for
most cases. e.g. Crochet and Naghdi (1966) and Bowen (1980). However. it has been
pointed out in a discussion by Bazant (1985) that the mixture theory could not demonstrate
any advantage over the Biot theory for fluid-saturated porous linear elastic solids and that
any new effect could be easily incorporated by a natural extension of the Biot theory or its
rationalized version.

Schiffman (1971) has developed an extended Biot theory including the thermal effects.
Booker and Savvidou (1984) have derived governing equations which allow for therm.11
effects. Neither of these theories. however. consider the heat transportation by a fluid flow
through pores (i.e. the convective component of heat transfer). In many cases, this heat
transportation plays an important and essential role.

The present paper extends the Rice-Cleary (1976) theory so as to incorporate the heat
transportation by a pore fluid flow in addition to the effect of difference in expansibility
between the pore fluid and the skeletal solid. The extended theory shows that the dis­
placement field is completely coupled with the pore pressure and temperature fields in
general; however, for irrotational displacement, the first field is decoupled from the last
two, which are still coupled to each other. This pore pressure-temperature coupling involves
nonlinearity.

Furthermore, after being simplified on the basis of the data on material properties for
various kinds of rock, the field equations are applied to a thermoelastic model problem of
hot (or cold) water injection from a spherical cavity into an infinite porous body having a
uniform reference temperature. The analysis of this problem reveals that the effect of the
heat transportation by fluid flow on the temperature distribution and the thermal stresses
varies very much with the kind of rock; that is, that effect is negligible for granites, at least
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for Charcoal granite. while for sandstone that eff~t predominates over that of thermal
conduction and the high temperature and high thermal stress regions penetrate far away
from the cavity.

~. EXTENDED GOVERNING EQUATIONS

By extending the Rice-Cleary (1976) or Cleary (1976. 1977) theory. let us develop a
quasi-linear quasi-static thermoelastic theory for a fluid-saturated porous material which
is subjected to both mechanical and thermal disturbances. We will incorporate the thermal
expansion of the skeletal solid and the pore fluid and the fluid flow induced by the difference
in thermal expansibility between them as well as the heat transportation by a fluid flow
through the pores. We will start with Cleary's (1976) thesis. where the background for
thermodynamic principles for porous media is described in detail; we will give little thermo­
dynamic description here.

2.1. Constitutit'e equations
The material is composed of a solid matrix which contains interstitial pore space filled

with a freely diffusing pore fluid. Any trapped fluid is regarded as contributing to the net
constitutive behavior of the solid component. Let us denote total stresses. average strains.
pore pressure. and change in porosity by fT,l' [.,;. p. t1/'. respectively. To incorporate the
thermal expansion. we have introduced temperature change tiO from an initial equilibrium
temperature; we use the same temperature for both the matrix solid and pore fluid. because
local heat exchange between both components may be rapid enough in comparison with
glohal heat and fluid diffusions.

Cleary has proposed the Gihhs' equation in terms of a new state function [sec eqn
(16c) in Chapter 2 ofClcary (1976»). Ifall inelastic terms are ignored. it gives the basis for
deriving constitutive equations for the thermoelastic porous material under consideration;
the average strain. pore pressure. and entropy density arc expressed by partial derivatives
of the state function. We linearize these thermoelastic constitutive laws to obtain

( I )

(2)

where we have omitted the equations for the entropy density since we will not usc it. If the
material is isotropic.

3(vu -v) .
B· = '--'.__ (j

'} 2GB(I+v)(l+v
u

) '}

(3)

(4)

2G(I+v)
K=.--­

3(1-2v)
(5)

(6)

In the above equations. t'o. G. K. v. and IX are the porosity. the shear modulus. the bulk
modulus. the Poisson ratio. and the linear thermal expansion coefficient of the porous
matrix. respectively. The bulk modulus of the pore fluid is Kr• while K: is the effective bulk
modulus of the solid constituent. which is regarded as an experimental constant and identical
to its bulk modulus under some special conditions as discussed in Rice and Cleary (1976).
The induced pore pressure parameter of Skempton and the undrained Poisson ratio are
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denoted by Band Vu ' When the incompressible model is valid, e.g. for water-saturated soil.
B = 1 and Vu = 1/2. In general,

0< B ~ 1, 0 < v < Vu ~ 1/2. (7)

In eqn (2), IX' means the volumetric thermal expansion coefficient of the pore space. If
the pores expand with their shapes remaining similar as the porous matrix expands ther­
mally, coefficient IX' may be expressed as

(X' = 3t'ox.

Linearization of the pressure-density-temperature curve of the pore fluid yields

tiplpo = pIKr-itifJ

(8)

(9)

where ci is the volumetric thermal expansion coefficient of the pore fluid and tip is a change
in fluid density from its reference value po. A change in fluid mass per unit volume of the
material m = pv is given by tim = Potiv+votip. Substituting eqn (9) into this equation. we
obtain

(
Vo )tim = Po tiv+ K/-civotiO . (10)

Next. let us consider constitutive relations associated with the heat and fluid diffusion
processes. Denote the heat flux <md fluid mass flux by hi and ql. respectively, and we can
easily obtain the following coupled Fourier-Darcy laws by identifying the consequence of
positive entropy production as implied relations between the fluxes and their driving forces
[see eqn (14b) in Chapter 2 ofClc,lry (1976)]:

(II)

(12)

for the case of no body force. Here. LI} and L;j are cross-effect coefficients. The former
represents the effect called thermo-osmosis. Since the last terms are, in general, much smaller
than the first tcrms on the right-hand sides of eqns (II) and (12), we ncglectthesc terms:

(II)'

(12)'

If thc material is isotropic. permeability "Ij and thermal conductivity "ij can be reduced to

(13)

(14)

2.2. Consen'ation laws
There are three non-trivial conservation laws in the present quasi-static non-isothermal

context: the first is a momentum balance or equilibrium equation

(15)

if there exists no body force. The second equation is that of fluid mass conservation
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(16)

for no fluid mass supply. These are the same as those of the isothermal case by Cleary
(1977).

The last equation is an energy conservation equation. This can be obtained from eqn
(II) in Chapter 2 of Cleary (1976) in the same way as for the conventional linear theory of
thermoelasticity. e.g. by Boley and Weiner (1960). Neglecting the terms proportional to
(e,)' and (do)' representing the interconvertibility of thermal and mechanical energy, we
obtain, for the case of no heat source,

(17)

where pT and C T are the total mass density and specific heat. and H means the specific
enthalpy of pore fluid. The Lagrangian description is used in eqn (17) and the last term on
the right-hand side represents the transportation of enthalpy by fluid flow through pores.
For fluids such as water and oil. an increase in internal energy due to a temperature rise
may play a predominant role in the enthalpy. Therefore. the specific enthalpy can be
expressed as

( 18)

if we introduce, temporarily, lluid temperature rise d T and specilic heat C t of the pore
lluid.

On the other hand. we assume that a heat exchange between the matrix solid and the
pore l1uid is rapid enough compared to the global heat and l1uid dill"usion processes. Thus,
the local heat equilibrium is established:

( I 9)

By egns (18) and (19). enthalpy H is expressed in terms oflocal equilibrium temperature
dO. The last term on the right-hand side of egn (17), into which the expression of H is
substituted, represents the heat transportation by the pore fluid tlow. Here, we do not know
whether we should keep or omit this nonlinear term; we will discuss this point by reference
to the material parameters introduced later for various kinds of rock.

2.3. Strain-displacement relation
The deformation of the material is described by strain tensor f:ij. which is defined in

terms of a suitable average displacement II, of the solid constituent as follows:

(20)

3. FIELD EQUATIONS AND IRROTATIONAL DISPLACEMENT FIELD

3.1. Fidel eqllations
[n what follows, attention will be restricted to an isotropic case. Substituting egns (3),

(4), and (6) into (I), and solving it with respect to total stress (fl)' yields

_., [. __v_ ] 3(vu-:~_)_._ <5- 2GC(I+v) dO <5 .
(f'j-~G ~'J+ 1_2vf:a<5ii B(I+vJ(I-2v)P '1 1-2v /1'

(21)

With the help of this equation and eqn (20), equilibrium equation (15) is reduced to a
modified Navier equation in terms of displacement as follows.
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By eliminating e,i = U"i from eqn (21) with i = j and eqn (22) differentiated with respect to
X" we obtain one of the compatability equations in terms of a,i, p, and dO. That is

[
6(vu-v) 4GiX(l+v) ]

ajj+ B(I+vu)(l-v)P+ I-v dO ,ii =0. (23)

Substituting eqns (4), (5) and (8) into (2) and in turn the resulting equation into eqn
(10), we find

(24)

where use has been made of relations between the material parameters

(25)

We can understand the physical meaning of B by taking dO = 0 (isothermal) and Mn = 0
(undrained) in eqn (24) (see Rice and Cleary. 1976). The last term on the right-hand side
of (24) represents the etTect of the ditTerence in thermal expansibility between the solid and
l1uid constituents on the tluid mass content. By eliminating a",il from eqn (23) and eqn
(24) dil1'crentiated twice with respect to Xi' we find

Usc of Darcy's law (II)' with (13) in mass conservation law (16) gives

iJdm
T=PoKP,ij

which is rewritten with the aid of eqn (26) as

with the definition of fluid mass diffusivity

(26)

(27)

(28)

(29)

With the help of eqns (18) and (19) and Fourier's law (12)' with (14), energy equation (17)
is written as

(30)

where Co is the thermal diffusivity and Co is the parameter concerning the heat trans­
portation by pore fluid flow. These are given by
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(31 )

(32)

3.2. lrrotational displacement field
Modified Navier equation (22), fluid diffusion equation (28). and thennal diffusion

equation (30) derived for a fluid-saturated, isotropic, thenno-poro-e1astic body are com­
pletely coupled with each other through eqns (21) and (25). However, for the special case
of irrotational displacement field, it can be shown that the thennal and fluid diffusion
equations. which are still coupled, are decoupled from the deformation field equations.

For the irrotational displacement, it can be expressed as the gradient of a scalar
function, that is

II, = (1),/.

Using this in modifed Navier equation (22) and integrating it with respect to x" yields

3(1',,-1') :x(I+v)= ~----- --~- p+ ~--- -,W+q(t)
2(;8(1-1')(1 +1',,) I-v '

(33)

(34)

where !/(t) is an arbitrary function of time. Suhstituting elln (34) into (21) with i = j, we
ootain

6(1'" - v) 4G:x( I + v) 2(i( I + v)
(J = - .- ~ . f' -- ~() + q(t).

1/ B(I-v)(1 +vu ) I-I' 1-21' '
(35)

Suostituting this into eqn (25) and in turn the resulting equation into eqn (2X), we lind a
fluid diffusion equation in terms of pore pressure,

Dp . ,,(l~{) '"~ d
~ = (P.IJ+ C ~ - -( d g(t)( t (: t t

where C is given by elln (29), and C' and C' by the following:

2G8(1-1')(1 +1',,)
C"= .

3(1-21')(1-1'.,)

(36)

(37)

(38)

The second term on the right-hand side of (36) represents the efl"cct of thermal expansion
of the solid and fluid constituents on the pore pressure Held. Temperature and pore pressure
field equations, (30) and (36), are still coupled. Those arc decoupled from the deformation
field e4uations, though they are indirectly coupled through traction boundary conditions
and function g(t) in some cases.

3.3. Nondimensional L'ariahles and material parameters
In order to facilitate the analysis in the next section, let us denote the representative

length and increases in temperature and pressure by ro, ~()o. Po, respectively. and introduce
the following nondimensional variables:
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Table I. Nondimensional material parameters for various rocks

Material A o A', ,-t';

Charcoal granite 0,134 11,66 1.110
Westerly granite 0,746 x 10- 1 27.47 1.2·t(
Ruhr sandstone 0.309 x 10- 3 25.47 1.384
Weber sandstone 0,792 x 10-' 9.89 1.736
Berea sandstone 0.103 x 10-' 3,79 3.101

t = t/(r~/C).

By using these variables. eqns (30) and (36) are written as

where bars over all variables have been omitted for simplicity and

1045

(39)

(40)

(41 )

with

A -!!.!!A'
1- G I'

2G( I + v)CCdOo ,
A, = -----.---~--- A ,

• Pu •
(42)

I
A' - -.- ..-...-.------~~ ...-.

I - [2B2(1 +vY(I- V)]
t' ....~._-_.----
o 9(I-vu)(vu -v)

(43)

(44)

In the above equations. Au. A'I- and A2• are nondimensional material parameters. Factors
Po/G and 2G( 1+ v)cedOu/Po in the second and last equations of (42) are nondimensional
pressure and thermal loads. respectively. For granite and sandstone, values of A o• /1'.. and
A 2arc listed in Table I. where the pore fluid is assumed to be water. The values of C. 1'0.

V. vu • B are borrowed from Rice and Cleary (1976). For all the rocks, the same thermal
ditfusivity and thermal expansion ratio are assumed. that is Co = 1.64 x 10 - 2 cm2/sec and
ijx = 25. This ratio is roughly evaluated from the data: IX = 8.3 X 10- 6 ItC for granite.
ce = (5 to 12) x 10 - 6 IrC for sandstone. and Ii = 0.21 x 10 - J WC for water.

4. TIlERMAL STRESSES CAUSED BY 1l0T·WATER I:-':JECTION

4.1. Prohlcm formulation
One of the simplest applications of the thenno-poro-elasticity theory established in the

preceding section is to a spherically symmetric problem of underground perturbations.
Consider an infinite nuid-saturated porous elastic solid with a cavity of radius ro in equi­
librium. Let us find the solution of thermal stresses in this solid caused by a sudden injection
of hot (or cold) water into this cavity. 'The injected water has a temperature higher by dOo
relative to the equilibrium temperature and a pressure higher by Po compared to the
equilibrium pore pressure. It is assumed for simplicity that the cavity wall is completely
permeable and that the temperature at the wall is kept the same as that of the injected fluid.

Thus. the initial conditions are given by
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(J, = 0, (Jrl = 0, ~8 = 0, p = 0 at t = 0 (45)

for all r ~ I, and the boundary condi tions by

(J, = - I, ~8 = I, p = I, at r = I

(J, = O. ~e = O. p = 0 at r -+ X

(46)

(47)

for all time t > O. where all bars over the nondimensional variables have been omitted
again; this will be the case in what follows.

4.2. Stresses in terms of pore pressure and temperature
Because of the spherical symmetry, modified Navier equation (22) can be easily inte­

grated. Using the solution of radial displacement in eqns (20) and (21), and determining
the integral constants by the first boundary conditions in (46) and (47). we obtain radial
and circumferential stresses

(48)

(49)

where

and

(50)

2G( I + v)cx~(}o
To =

(I-v)po
(51 )

In eqns (48) and (49), pore pressure p and temperature MJ depend on time and stresses (Jr

and (Jo do so; but the time dependence has been suppressed. Equations (48) and (49) expn.:ss
stn:sses in terms of pore pressure and temperature, which will be determined in the next
subsection.

4.3. Pore pressure and temperature
Pore pressure and temperature are governed by coupled equations (40) and (41). in

whichg(t) = 0 in this specific case because of the infinite extent of the body. These equations
are written in the spherical polar coordinate system as

As for the nondimensional pressure and thermal loads, those are assumed to be

Po -1 2G(I+v)~Oo
---=10', - =1.
G Po

(54)

This pressure value is quite high and this thermal load corresponds to ~8o = 35-80"C for
the granite rock and sandstone. For these values, we can simplify coupled equations (52)
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and (53) for most cases by ignoring (or keeping) some terms in them according to the values
ofcoefficients A 0, A I, A 2 for each rock.

• For the granitic rocks. We can take A I =0 in eqn (52) compared to A o, at least for
Charcoal granite. Ifwe are satisfied with rough estimates of the pore pressure and tempera­
ture, and consequently the thermal stresses, this is the case also for Westerly granite.
Condition A I =0 decouples eqns (52) and (53). Thus, we can easily obtain the analytical
solutions for these equations under initial and boundary conditions, (45) and (46), (47).
The solutions are

I ( r-I )flO =- erfc --
r 2jA;r

( AoA2) I (r-I) (AoA2) I ( r-l )p= 1+-- -erfc -- - -- -erfc --
l-Ao r 20 I-Ao r 2jA;r

(55)

(56)

where erfc(') denotes the complementary error function .

• For the sandstone. We can see that Ao = Co/C is very small for all types of sandstone
listed in Table I; this implies that the fluid diffusion is much faster than the thermal one.
Thus, we can expect that the fluid diffusion becomes steady before the temperature begins
to change, that is fluid diffusion equation (53) is reduced to

the solution of which is given with the help of boundary conditions (46) and (47) by

p = Ilr.

By using this solution and new nondimensional time

eqn (52) is written as

with

(57)

(58)

(59)

(60)

(61)

It seems difficult to solve the above differential equation analytically; we cannot avoid
resorting to the numerical method. We have employed the Crank-Nicolson implicit method.

• For Berea sandstone. Coefficient). defined by eqn (61) is extremely large for this particular
sandstone so that it is not easy to integrate eqn (60) even numerically. Thus, we will further
drop the first two terms on the right-hand side of eqn (60), that is

(62)

This equation has the exact solution
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(63)

where H (.) means the Heaviside unit step function. It can be seen that there is a temperature
discontinuity, which proceeds with the speed given by

(64)

For this particular sandstone, the pore pressure distribution is again given by eqn (58).

5. NUMERICAL CALCULATION AND DISCUSSION

To evaluate the stresses around the cavity caused by the sudden injection of hot (or
cold) water into it, it is required to evaluate integrals (50). This evaluation has been done
numerically with the exception of the following cases. For all sandstone, the pore pressure
is given by eqn (58), so that

l,,(r) = !(r 2 -I).

For the Berea sandstone. the temperature is given by eqn (63). We obtain

with

r. = (I +6l,·)'iJ.

In this particular case. the stresses can be also written in the explicit form: for r ~ r••

(65)

(66)

(67)

and for r > r••

(68)

(69)

(70)

(71 )

In the numerical calculation, attention is restricted to the case of "cold water" injection.
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Fig. I. (al Pore pressure and temperature and (b) radial and hoop stresses. for Charcoal granite.

The results are plotted in Figs I, 2, and 3 for Charcoal granite, Ruhr sandstone, and Berea
sandstone, respectively. In all the figures, the abscissa is a nondimensional radial distance
from the cavity center, with r/ro = I corresponding to the cavity wall. Note that the scales
of the nondimensional time in the figures are different from each other for each kind of
rock.

Figure la shows the pore pressure and temperature distributions at a few different
times for Charcoal granite. The pore pressure changes slightly more rapidly than the
temperature. Figure Ib is the similar curves for the stresses. Circumferential (or hoop)
stress (19 at the cavity wall is very high owing to superposition of the stresses due to the
thermal and pressure loads. Since the heat transportation by pore fluid flow is negligible
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fig. 2. (a) Pore pressure and temperature. (b) radial stress and (c) hoop stress, for Ruhr sandstone.
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Fig. 3. (a) Pore pressure and temperature. (b) radial stress and (c) hoop stress. for Berea sandstone.
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(i.e. A I ::: 0). the thermal stresses do not penetrate deep from the cavity even after a long
lapse of time.

In contrast to Charcoal granite. Ruhr sandstone has a very large fluid ditfusivity
compared to its thermal one. The pore pressure. which therefore becomes steady immedi­
atdy after pressurization at the wall. declines reciprocally proportional to the distance from
the cavity. On the other hand. the region of high (but negative for the cold water injection)
temperature extends away from the cavity with a time lapse owing to the heat transportation
by fluid flow. as shown in Fig. 2a. Corresponding to the extension of the high temperature
region. the high tensile thermal stresses are induced in the deep region far from the cavity.
as seen in Fig. 2b.c. As the cavity is approached. radial stress (j, declines up to -pi) and
circumferential stress (J" rises up to its peak. This is due to the pressure loading at the wall.

Among various types of sandstone. Berea sandstone has extremely large fluid ditTusivity
relative to its thermal one. Thus. the heat conduction has been ignored. This neglect results
in the discontinuous distribution of the temperature and the hoop stress and in the nOI1­
smooth distribution of the radial stress. as depicted in Fig. 3. The temperature discontinuity
at r::: r * [given by eqn (67)J. which may be called a cold water front. proceeds into the
infinite body with its jump remaining constant. The jump in hoop stress also remains
constant for all time. as follows from egns (69) and (71).

In conclusion. the high-temperature and high-stress region is restricted to the vicinity
of the cavity for a rock having the fluid ditrusivity comparahle to the thermal one. while
such a region penetrates deep into the infinite rock if it has a large !luid ditTusivity. In other
words. the clred of the heat transportation hy a fluid !low on the temperature distribution
and the thermal stresses varies very much according to the kind of rock.

It should he added that the same was concluded for a similar model prohlem of a
porous layer cooled and pressurized over its upper surface. though we give 110 description
of it 11l:re.
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